VAUTID 35
Tubular wire
Hardfacing material for continuous casting rollers

<table>
<thead>
<tr>
<th>Specification</th>
<th>Tubular wire electrode DIN EN 14700 T Fe7 cpt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material type</td>
<td>Hardfacing material on iron base with Chromium, Nickel and Molybdenum additions</td>
</tr>
<tr>
<td>Alloy components</td>
<td>Cr – Ni – Mo</td>
</tr>
<tr>
<td>Welding deposit characteristics</td>
<td>VAUTID 35 produces a crack-free, martensitic stainless steel weld deposit. Perfectly suited for parts exposed to heat (oxidation), corrosion, impact and medium wear. The weld material can be machined and forged</td>
</tr>
<tr>
<td>Weld deposit properties</td>
<td>Hardness of pure welding deposit (acc. DIN 32525-4): approx. 20 HRC Hardness 1. Layer on S235JR (1.0037): approx. 42 - 47 HRC</td>
</tr>
<tr>
<td>Recommended applications</td>
<td>Typically applications are build-up layers for continuous casting rollers, valve seats, gate valves and metal to metal applications in general</td>
</tr>
<tr>
<td>Standard sizes</td>
<td>Tubular wires: Diameter 2,4 / 2,8 mm Packing: Reels of approx. 25 kg, Drums of approx. 250 kg</td>
</tr>
</tbody>
</table>

Welding instructions for tubular wires:

VAUTID 35 tubular wires are welded open-arc without inert gas on the +pole. In order to prevent slag-flow sagging wire-guiding should be preferred. Both the weave bead and the stinger bead techniques can be used. Several layers can be welded

<table>
<thead>
<tr>
<th>Diameter (mm)</th>
<th>Current (A)</th>
<th>Voltage (V)</th>
<th>Stick out (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,6</td>
<td>160 – 280</td>
<td>24 – 27</td>
<td>20 – 35</td>
</tr>
<tr>
<td>2,0</td>
<td>180 – 310</td>
<td>25 – 28</td>
<td>24 – 45</td>
</tr>
<tr>
<td>2,4</td>
<td>220 – 350</td>
<td>26 – 29</td>
<td>24 – 45</td>
</tr>
<tr>
<td>2,8</td>
<td>270 – 430</td>
<td>27 – 30</td>
<td>30 – 50</td>
</tr>
<tr>
<td>3,2</td>
<td>290 – 470</td>
<td>28 – 30</td>
<td>30 – 55</td>
</tr>
</tbody>
</table>

Welding positions (EN ISO 6947): PA, PB

* subject to common industrial fluctuations

This data sheet corresponds to the present state of production (October 2016) and can be changed anytime.